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ABSTRACT 

This inves t iga t ion  is concerned with the phenomenon of a gas j e t  
impinging on, and penet ra t ing  into,  a l i q u i d .  The s tudy is r e s t r i c t e d  
t o  the case of a round j e t  of subsonic and supersonic v e l o c i t i e s  pen& 
t r a t i n g  the l i q u i d  a t  r i g h t  angles.  The phenomenon was analyzed from 
two viewpoints.  The f i r s t ,  a stagnation>-rgsrure-anabsis, r e l a t e d  the  
depth of the su r face  depression o r  cav i ty  t o  the s t agna t ion  pressure 
based on the c e n t e r l i n e  ve loc i ty  of the j e t  i n  the neighborhood of the  
sur face .  The second, a displaced l i q u i d  analySi3 which takes the mixing 
process of the j e t  i n t o  account, r e l a t e d  the weight of the l i q u i d  displaced 
from the cav i ty  t o  the momentum of the j e t .  It was attempted t o  der ive  
sca l ing  laws from these inves t iga t ions  t o  p r e d i c t  pene t ra t ion  depth of 
f u l l - s c a l e  rocke t  motors of space veh ic l e s  launched from platforms b u i l t  
over a water sur face .  Splash heights were a l s o  analyzed and correlated. ,  
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TECHNICAL MEMORANDLIM X-53214 

JET PENETRATION INTO A LIQUID 

SUMMARY 

This inves t iga t ion  is concerned wi th  the  phenomenon of a gas j e t  
impinging on, and penet ra t ing  into,  a l i qu id .  The s tudy is  r e s t r i c t e d  
t o  the  case of a round j e t  of subsonic and supersonic  v e l o c i t i e s  pene- 
t r a t i n g  the  l i qu id  a t  r i g h t  angles. The phenomenon w a s  analyzed from 
two viewpoints. The f i r s t ,  a s tagnat ion  pressure ana lys i s ,  r e l a t e d  the  
depth of the  su r face  depression or cav i ty  t o  the  s tagnat ion  pressure 
based on the cen te r l ine  v e l o c i t y  of the  j e t  i n  the neighborhood of the 
sur face .  The second, a displaced l i q u i d  ana lys i s  which takes the  mixing 
process of the  j e t  i n t o  account, r e l a t e d  the  weight of the l i qu id  d i s -  
placed from the  cavi ty  t o  the momentum of  the  j e t .  It w a s  attempted t o  
derive sca l ing  l a w s  from these inves t iga t ions  t o  p r e d i c t  pene t ra t ion  
depth of f u l l - s c a l e  rocket  motors of space vehic les  launched from p l a t -  
forms b u i l t  over a water surface.  
co r re l a t ed .  

Splash he ights  were a l s o  analyzed and 

/q UT340 
I. INTRODUCTION 

Numerous s t u d i e s  have been made r ecen t ly  on problems concerned wi th  
the f l u i d  mechanics of j e t s  i n  the neighborhood of r i g i d  boundaries. 
These inves t iga t ions  have been devoted pr imar i ly  to  the determination of 
v e l o c i t y  and pressure d i s t r i b u t i o n  f o r  var ious configurat ions.  A l o g i c a l  
extension of these s tud ie s  would be the  inves t iga t ion  of subsonic and 
supersonic  j e t s  impinging on a deformable su r face  such as a l i qu id .  
Depending on the r e l a t i v e  d is tance  of the nozzle above the sur face ,  the  
gas j e t  w i l l  behave d i f f e r e n t l y  due t o  i t s  s t r u c t u r e .  While the nozzle 
pos i t i on  is c lose  t o  the sur face ,  the  p o t e n t i a l  core  plays a major r o l e ,  
and the  j e t  a c t s  l i k e  a f r e e  s t reamline je t .  For higher  e l eva t ion ,  
t u rbu len t  mixing plays the  major ro l e .  

THe impinging j e t  causes a depression on the  l i qu id  su r face  which 
might be shallow i n  the case of a weak subsonic j e t  o r  more l i k e  a deep 
cav i ty  i n  the case of a s t rong  supersonic je t .  
when the  c a v i t i e s  a r e  deep enough, l i q u i d  drops a r e  formed and projected 
from the  cavi ty ;  the  cavi ty  bottom tends t o  o s c i l l a t e  v e r t i c a l l y  and the  
s ides  l a t e r a l l y .  Cbnsiderable gas entrainment i n  the  l i qu id  is observed, 
and su r face  waves a r e  propagated from the  d is turbed  zone. 

Under c e r t a i n  condi t ions ,  



11. THE FLUID MECHANICS OE A TURBULENT J E T  

The s i m p l e s t  case of a j e t  boundary l aye r  is found during th? d i s -  
charge of f lu id  wi th  a uniform i n i t i a l  v e l o c i t y  f i e l d  (UO = const . )  i n t o  
a medium moving a t  constant  v e l o c i t y  (urn = cons t . )  o r  being a t  r e s t  
(subverged jek) .  

The thickness of the  boundary l aye r  i n  the i n i t i a l  reg ion  of t he  
j e t  s tarts out w i th  zero a t  the l i p  of the  nozzle.  The thickening of the  
j e t  boundary layer ,  which cons i s t s  of acce lera ted  pa r t i c l e s  of the 
surrounding medium ca r r i ed  along wi th  i t  and par t ic les  of the  j e t  i t s e l f  
t h a t  have been slowed down, leads t o  an  increase  i n  the  c ross  s e c t i o n  of 
t he  j e t ,  as well  as t o  an "eat ing up" of i t s  nonviscous core.  Figure 1 
shows a s impl i f ied  diagram of the j e t .  

The p a r t  of the j e t  i n  which the re  is  a core of p o t e n t i a l  flow is 
termed the  i n i t i a l  region.  The s t a t i c  pressure  wi th in  the j e t  i s  assumed 
t o  be constant ,  and as a r e s u l t  of t h i s ,  the v e l o c i t y  i n  the p o t e n t i a l  
core  remains constant .  The centeraline v e l o c i t y  beyond the  i n i t i a l  reg ion  
decreases  r a the r  r ap id ly ,  and the  j e t  widens f a s t e r  as shown i n  Figure 1. 

We d i s t ingu i sh  three .  regions of the  tu rbu len t  j e t .  

a .  The i n i t i a l  region where the  v e l o c i t y  r a t i o  is cons tan t ,  

and the dimensionless v e l o c i t y  p r o f i l e s  of the boundary l aye r  i n  sec t ions  
normal t o  the j e t  a r e  s imi la r .  

b. The t r a n s i t i o n a l  reg ion ,  beginning wi th  the drop of t he  
v e l o c i t y  on the a x i s  and the  absence of s i m i l a r  v e l o c i t y  p r o f i l e s ,  
terminates  when the dis turbances have reached the  ou te r  boundary of the  
j e t .  

c. The main region aga in  is  charac te r ized  by a universa l  ' 

v e l o c i t y  p r o f i l e  normal t o  the a x i s  which is the  same f o r  compressible 
as f o r  incompressible j e t s .  
f o r  the  t r a n s i t i o n a l  and main region i n  genera l  as 

The v e l o c i t y  on the j e t  cen te r l ine  decreases  

U X 

U X C 

m C 

0 

- = -  f o r  x r x . 

2 



Figure 2 shows a comparison of equation (2)  wi th  measurements of Refer- 
ence 1. 
except i n  the  t r a n s i t i o n a l  region where the  j e t  v e l o c i t y  does no t  fol low 
the  d i scon t inu i ty  a t  the  end of the p o t e n t i a l  core,  and a t  l a r g e  d i s t ances  
where the  v e l o c i t y  seems t o  approach zero f a s t e r .  The more exac t  equa- 
t i o n s ,  given i n  Reference l, r e s u l t  from the i n t e g r a t i o n  of the mass, 
energy, and momentum conservation l a w s  and are i m p l i c i t  expressions and 
r a t h e r  involved, and moreover do no t  g ive  b e t t e r  r e s u l t s  i n  the t r a n s i -  

a t  the  end of the  p o t e n t i a l  core,  and a t  l a r g e  d is tances  where the  
v e l o c i t y  seems t o  approach zero f a s t e r .  The more exac t  equat ions,  given 

i/ i n  Reference 1, r e s u l t  from the  in t eg ra t ion  of the  mass, energy, and 
momentum conservation l a w s  and a r e  i m p l i c i t  expressions and rather 
involved, and moreover do  not  give b e t t e r  r e s u l t s  i n  the t r a n s i t i o n a l  
region. 

The simple l a w  represents  the  v e l o c i t y  decay f a i r l y  wel l ,  

, t i o n a l  reg ion  where the  j e t  ve loc i ty  does not  fol low the d i s c o n t i n u i t y  

The length  of the i n i t i a l  region, sometimes r e fe r r ed  t o  as the  
length  of t he  p o t e n t i a l  core xc, depends on a number of parameters. 

as 
is 

a. With increas ing  Mach number, the core  length  xc increases  
shown i n  Figure 3, where the  core length  f o r  i d e a l l y  expanded j e t s  
p lo t t ed  versus  the  v e l o c i t y  r a t i o  (u/-x)*. With the  expansion 

r a t i o  as parameter, one no t i ces  that over expanded jets Po/P, < 1 have 
a s h o r t e r  core  length.  Two curves are shown i n  Figure 3 f o r  the expan- 
s i o n  r a t i o  of 1 from d i f f e r e n t  references [l, 21. The experimental 
po in t s  are s c a t t e r e d  between these two curves. The curve of Reference 2 
has no t h e o r e t i c a l  backing. and is drawn t e n t a t i v e l y  according t o  the  
experiments with ho t  and cold j e t s .  

b. 
i ength  xc decreases ,  a l s o  shown i n  Figure 3. Chemical r eac t ion ,  however, 
is not  included. According t o  Reference 1, i t  has some e f f e c t  on the 
core  length ,  e spec ia l ly  when the flame f r o n t  moves c l o s e r  t o  the boundary 
of the p o t e n t i a l  core.  
e s t ab l i shed  wi th  the s impl i f i ed  theory of Reference 1 for heated air  
jets only wi th  t o t a l  temperatures higher  o r  lower than the  t o t a l  ambient 
temperature,  TE. 
we have t o  take t h e i r  dens i ty  in to  account. 

With increas ing  t o t a l  temperature e of the j e t ,  the  core  

The curves f o r  d i f f e r e n t  e* i n  Figure 3 are 

I f  we  want t o  apply the curves t o  o the r  gas compositions, 

3 



i where 

2 (+) = M*= (s). 
maX 

( 4 )  

c. Under- and over-expanded j e t s ,  Po > P, and Po < P,, 
r e spec t ive ly ,  have d i f f e r e n t  p o t e n t i a l  core lengths  and completely d i f -  

-Jferent s t r u c t u r e s  of the core i t s e l f .  We encounter a system of expansion 
and compression waves, and consequently, changes i n  v e l o c i t y  and d e n s i t y  
f o r  supersonic j e t s .  The core length  increases  f o r  an  under-expanded 
j e t  and decreases f o r  an  over-expanded j e t  as shown i n  Figure 3. 

These a r e  the most important parameters f o r  our  j e t  pene t r a t ion  
problems. In  Reference 2 ,  some rockets  were t e s t ed  and t h e i r  core  lengths  
were p lo t t ed .  N o  apprec iab le  d i f f e rence  w a s  observed compared wi th  the  
cold air j e t s ,  However, the authors  agree t h a t  a "hot" j e t  ( rocke t  j e t )  
has a reduct ion i n  core length  (a f i g u r e  of 20 percent  w a s  quoted). The 
reduct ion  i n  core length  of h o t  a i r  j e t s  is confirmed by experiments 
ca r r i ed  out  by Yakovlevsky and Pechenskin [l, p! 3041, an3 they agree  
very  w e l l  w i t h  the s impl i f i ed  theory of Reference 1. Compressible j e t s  
impinging a t  a r i g h t  angle  on an obs t ac l e  develop a detached shock wave 
i n  f r o n t  of i t ,  provided the  c e n t e r l i n e  Mach number of the, je t  M j  i s  
g r e a t e r  than 1. The pressure a t  the s t agna t ion  po in t  is then given by 
t h e ' P i t o t  pressure r e l a t i o n  which depends only on the  Mach number j u s t  
i n  f r o n t  of the normal shock region on the c e n t e r l i n e  of the j e t .  

For the  case M j  2 1, the r a t i o  of the compressible t o  the  incompres- 
s i b l e  s tagnat ion  pressure  i s  given by the P i t o t  p ressure  r e l a t i o n  

which cons is t s  of the  a d i a b a t i c  compression due t o  the shock and the  
i s en t rop ic  compression between shock and s t agna t ion  poin t .  

4 



For M 5 1, no shock e x i s t s ,  and the a d i a b a t i c  compression of the 
j -  subsonic j e t  is considered, which is, f o r  t h i s  case,  

Y 

Figure 4 shows 
d i f f e r e n t  values  of 

the  pressure r a t i o  versus  the j e t  Mach number f o r  
the r a t i o  of s p e c i f i c  hea t ,  7 .  We no t i ce  that f o r  

high Mach nmbers  the curves approach a value of-approximately 1.8. 

111, THE ANALYTICAL MODELS FOR THE JET PENETRATION 

The following is taken from Reference 3 with only minor modif icat ions.  
* Figure 5 explains  a l l  dimensions and parameters. 

1. The Stagnat ion Pressure Analysis 

- We assume that the maximum pene t r a t ion  depth n,, is equal t o  
the  dynamic pressure of the  j e t  a t  the cen te r l ine ,  and the v e l o c i t y  i n  
the  l i q u i d  is zpro. 

! 

1 
q . f = : p u Z f =  7L no' 

This equation accounts f o r  the  compress ib i l i ty  of the j e t .  
is f a func t ion  of x/do f o r  constant s p e c i f i c  hea t  r a t i o  7. 
Mach number of the j e t  cen te r l ine  M j  can be expressed i n  terms of %/ach 

Like a, so 
Since the 

o r  (%/uo) Mex, 

where ach is the t o t a l  speed of sound given b; chamber conditions.  

5 



The v e l o c i t y  on the c e n t e r l i n e  is  given by equat ion (2), 
and the th rus t  of a n  i d e a l l y  expanded j e t  Po/P, = 1 equals  t o  

which is the  momentum of the j e t  a t  the e x i t  and which s t a y s  cons tan t .  
Equations (2) and (9) i n se r t ed  i n t o  equat ion (7)  and wi th  x the d i s t ance  
from the nozzle t o  the s t agna t ion  po in t  replaced by (H + no) ,  we ob ta in  
a dimensionless expression 

%en we introduce the  v e l o c i t y  l a w  given by equat ion (2), we assume that 
the  dynamic pressure decay is n o t  a f f ec t ed  by the entrainment of water 
drops.  However, t h i s  assumption is not  necessary f o r  the core ,  s i n c e  
no water can en te r  t h i s  region.  

2. The Displaced Liquid Analysis 

The momentum of a j e t ,  which is  equal  t o  the  t h r u s t  of an 

We assume now t h a t  the  component of the momentum of the 
i d e a l l y  expanded j e t ,  is  conserved and ca r r i ed  over t o  the l i qu id  which 
is d isp laced ,  
depar t ing  gas i n  the d i r e c t i o n  of the j e t  i s  small and neg l ig ib l e .  Then 
one can s e t  the t h r u s t  equal t o  the  weight of t he  displaced l i q u i d .  It 
is f u r t h e r  assumed t h a t  the  c a v i t y  p r o f i l e  is e s t ab l i shed  by a known 
pressure  d i s t r i b u t i o n  obtained from c i r c u l a r  jets impinging on a s o l i d  
su r face  and t h a t  the depression is s u f f i c i e n t l y  small that the change i n  
shape of t he  l i qu id  su r face  does n o t  apprec iab ly  a l t e r  the v e l o c i t y  and 
pressure  d i s t r i b u t i o n  of the  gas flow. 

The pressure d i s t r i b u t i o n  of a submerged c i r c u l a r  l i qu id  j e t  
impinging on a f l a t  submerged p l a t e  was experimental ly  obtained by Poreh 
and Cermak [3]. The s t a t i c  pressure  d i s t r i b u t i o n  of a gas j e t  impinging 
on a f l a t  p l a t e ,  which is  shown i n  Figure 6 ,  is another  experimental ly  
obtained curve [8]. An e r r o r  curve approximation agrees  f a i r l y  wel l  
w i th  the  experimental da t a  of References 3 and 8 f o r  a value of B = 130 
(Figure 6 ) .  For the general  i n v e s t i g a t i o n ,  p must be v a r i a b l e  t o  account 
f o r  the  d i f fe rence  of Mach number, temperature,  expans ion , ra t io ,  e t c . ,  of the 
j e t s .  

6 



The displaced l i qu id  weight is then given by in t eg ra t ing  the  volume 
mul t ip l ied  by the  s p e c i f i c  weight of the l i qu id .  

yLz H2 n 
- 0  

= 7Lv = B 

Instead of the e leva t ion  of the nozzle above the f l a t  p l a t e  H, we 
introduce now the e leva t ion  of the nozzle above the  water l e v e l  p lus  
the  'penetrat ion depth no, t o  obtain the same d is tance  of the  nozzle from 
the  s tagnat ion  poin t ,  no + H. The t h r u s t  of t he  j e t  shall now be equal 
t o  the weight of the displaced l iquid according t o  the previously s t a t e d  
assumption. W e  ob ta in  

Equating equations (10) and (13), we f ind the  expression f o r  p a s  

p = 2f m2. 
The l e f t  s i d e  of equation (13) represents  a thrust-weight r a t i o  where 
the  volume of the  l i qu id  is nod:. The minimum penet ra t ion  depth of a 
j e t  can be obtained from (13) by rep lac ing  F with the  r i g h t  s i d e  of 
equation (9). 
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The term i n  the square bracket  is  equal t o  one according t o  equat ion (7), 
and the re fo re  is (no + H) 4 xc; i . e . ,  the  nozzle e l eva t ion  plus  penetra-  
t i o n  depth in to  the l i qu id  is equal t o  the core  length  of the i n i t i a l  
region xc. For  t h i s  case the s t agna t ion  po in t  moved i n t o  the  t r a n s i t i o n a l  
reg ion  of the j e t  f o r  which no universa l  v e l o c i t y  p r o f i l e  e x i s t s ,  and 
consequently the pressure d i s t r i b u t i o n  on a s o l i d  su r face  due t o  an 
impinging j e t  w i l l  change wi th  the  a x i a l  d i s t ance .  However, we assume 
t h a t  the d i f fe rence  between the v e l o c i t y  p r o f i l e s  of the main and 
t r a n s i t i o n a l  region i s  of minor consequence as the change i n  the pres-  
s u r e  d i s t r i b u t i o n  of a j e t  impinging on a s o l i d  o r  l i qu id  su r face ,  

where f i s  the func t ion  shown i n  Figure 4 .  It depends on the j e t  Mach 
number M j  ( the Mach number i n  f r o n t  of the normal shock),  which i s ,  on 
the  o ther  hand, a func t ion  of the e x i t  Mach number Mex and the dimension- 
less s tandoff  d i s t ance  (no + H)/do  of the nozzle .  By s e t t i n g  

c1 = cty (yL?ddy  (17 )  

which is  e s s e n t i a l l y  a func t ion  of the  Mach number f o r  i d e a l l y  expanded 
j e t s ,  w e  can express equat ion (16) as 

+ H  - - 0 

0 
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By combining a l l  Mach number dependent terms, we can f ind 
a "universal" curve which w i l l  be the poin t  of depar ture  €or the model 
l a w s  : 



The maximum inf luence of f on the pene t ra t ion  depth (no + H)/d, can be 
obtained from equation (18) by s e t t i n g  H = 0: 

W e  no t i ce  t h a t  the penetrat ion increases only with the cubic r o o t  of f .  
The term i n  the square brackets is constant  f o r  an  idea l ly  expanded j e t  
of a given Mach number. Equation (19) shows a l s o  that f o r  increasing 
e x i t  diameter the r e l a t i v e  penetrat ion (no/do) decreases.  The core 
length  (xc/do) can be obtained from Figure 3 i f  the j e t  expands idea l ly .  
For over- o r  under-expanded jets, an  equivalent  core length  must be 
taken which is a l s o  shown i n  Figure 3. On the  o ther  hand, the core 
length  can be obtained from t e s t ing  a s c a l e  model of the  prototype. 

IV. DISCUSSION OF THE TEST RESULTS 

A l i t e r a t u r e  survey showed that a l ready  a mult i tude of t e s t s  are 
a v a i l a b l e  which d e a l  with penetrat ion of gas j e t s  i n t o  l i qu ids .  Now 
add i t iona l  tests were conducted in  References 5, 6 ,  9, and 10, which 
w e r e  cor re la ted  wi th  ex i s t ing  data.  

I n  Figure 7 the  dimensionless pene t ra t ion  depth no/do was p lo t ted  
versus  the dimensionless he igh t  of t he  nozzle above the  water l eve l .  
The t h e o r e t i c a l  curve was obtained from equation (18). A good repre-  
s e n t a t i o n  is given f o r  a range of H/do between 0 and approximately 30. 
For higher H/do values ,  the  ac tua l  pene t ra t ion  is l e s s  than the  predicted 
one. This could be p a r t l y  explained by the i n s u f f i c i e n t  r ep resen ta t ion  
of t he  v e l o c i t y  by the simple equation (2).  The je t  v e l o c i t y  seems t o  
vanish  f a s t e r  than the hyperbolic v e l o c i t y  law.  Figure 8 shows the 
approximate Mach number M j  on the c e n t e r l i n e  along the length  of the  
jet. 
ure  2 f o r  = 3.0. The minimum d i s t ance  between nozzle and stagnatiorl  
po in t  of the three  je ts  of Figure 7 is (a0 + H)/d, x 50. A comparison 
wi th  Figures 8 and 4 shows that the j e t  Mach number is in  the low sub- 
son ic  range and the inf luence of &? on the  pene t ra t ion  depth no/do is 
approgimately 1.03. 

It was obtained by equation ( 8 )  using f o r  %/uo the  curve of Fig- 

. 

Figure 9 shows the  data  of "cold" a i r  jets f o r  d i f f e r e n t  Mach numbers 

The flagged symbols 
M, and d i f f e r e n t  nozzle heights  H/do. 
ments, equation (10) co r re l a t e s  the  da ta  f a i r l y  w e l l .  
i nd ica t e  t e s t  r e s u l t s  where H/do = 0. 

Within the accuracy of the  experi-  

We observe that  the  s tagnat ion  poin t  
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i s  loca ted  f a r  downstream i n  the main r eg ion  of the j e t  where the  j e t  
Mach number is a l r eady  subsonic.  Apparently,  the water entrainment 
i n t o  the boundary layer  of the  j e t  has l i t t l e  e f f e c t  on the  assumption 
that the momentum along the j e t  is cons tan t  as pointed ou t  by the  
coincidence o f  experiments and theory.  When we en te r  experimental  
po in t s  of l a rge r  H/do > 30 t o  40, the  agreement becomes worse, as‘ 
gxpected, s ince  FiQure 6 shows a depar ture  from experiment and theory.  
The Penet ra t ion  f o r  H > 30 becomes l e s s  as theory p r e d i c t s ,  and con- 
sequent ly ,  the poin t  mus t  l i e  on the  l e f t  s i d e  of the corresponding 
t h e o r e t i c a l  curve. This depar ture  is p a r t l y  due t o  the  adopt ion of 
the s impl i f ied  v e l o c i t y  decay func t ion  as given by equat ion ( 2 ) .  . 

In  Figure 10 ‘‘hot’’ d a t a  are  p lo t t ed  f o r  d i f f e r e n t  t e s t s .  Again, 
equation (10) gives  a good approximation, as mentioned i n  the d iscuss ion  
of Figure 2 .  Since the  experiments show some s c a t t e r ,  i t  is  more 
appropr ia te  t o  use a band f o r  a c e r t a i n  Mach number instead of a s i n g l e  
curve.  Furthermore, the j e t s  a r e  not  a l l  expanded i d e s l l y  s o  that  the  
core  length  va r i e s  too.  

Figure 11 shows a “universa l”  p l o t  where a l l  a v a i l a b l e  da ta  of 
i d e a l l y  expanded j e t s  were used. .The d a t a  a r e  now independent of t he  
Mach number dependent core length  f o r  r e l a t i v e l y  l a rge  pene t ra t ions  no/do. 
Equation (16) was used t o  c o r r e l a t e  a l l  a v a i l a b l e  da t a .  However, f o r  
small penetrat ions (xc - n o )  and a given Mach number, the curve w i l l  
branch o f f  t o  d i f f e r e n t  values  of the o rd ina te  which are  i d e n t i c a l  t o  
the  core  length xc/do as shown by equation (15). Also the inf luence of 
t he  f a c t o r  f w i l l  be important f o r  supersonic  j e t s  because the j e t  Mach 
number i n  f ron t  of the  norma1;shock i s  r a t h e r  high (Figure 8 ) .  However, 
the  j e t  expands now i n t o  a region of high pressure  which changes the 
core  length  to  a smaller  value.  For f u l l y  expanded supersonic  j e t s ,  da ta  
of small  penetrat ion depth (no + H)/do a r e  not  ava i l ab le .  Col lect ing a l l  
a v a i l a b l e  subsonic and supersonic  d a t a  wi th  t h e i r  corresponding core 
length ,  w e  obtain Figure 10,  where da t a  of References 3 and 7 a r e  p lo t t ed .  
The core length of the subsonic j e t  is  l a r g e r ,  by a f a c t o r  of 2 ,  than 
given i n  Figure 3 .  This ind ica t e s  t h a t  the j e t s  used f o r  the  subsonic ’ 

impingement t e s t  were probably under-expanded. 
cerned wi th  t h i s  problem, we f ind core length  varying from 4 t o  10 f o r  sub- 
s o n i c  j e t s  [ 3 ] .  

I n  the l i t e r a t u r e ,  con- 

I n  Figure 1 2 ,  the  single-dashed curve now branches o f f  and approaches 
a value of approximately 8. Data obtained from Reference 3 were i n  the 
range from H/do = 4 t o  48, whereas i n  Reference 7 da ta  f o r  H/do  = 0 were 
a l s o  ava i l ab le .  The lowest nozzle e l eva t ion  of the subsonic t e s t  s e r i e s  
of Reference 3 was  H/do  = 4 with only a n e g l i g i b l e  no/do. This could be 
explained by a shortening of the core  of the  j e t  which, posi t ioned c loser  
t o  the  water  su r face ,  expands i n t o  a rFgion of higher pressure ,  thus 
approaching the condi t ion of i dea l  expansion. Furthermore, the sharp  
corner  of the cen te r l ine  v e l o c i t y  is not  r e a l ,  as a comparison of the 
r e a l  ve loc i ty  with the simple l a w  xc/x i n  Figure 2 shows. 
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V. MODEL LAWS FOR THE PENETRATION 

For the  pene t ra t ion  problem, we want t o  s imulate  the  dimensionless 
pene t ra t ion  no/do which s h a l l  be the same f o r  prototype and model: 

To achieve t h i s ,  the  expression given by equation (16) must be held 
cons tan t  f o r  model and prototype. Rewriting equation (16) y i e lds  

The s o l u t i o n  f o r  no/do is a cubic and can be solved by graphica l  means. 
However, f o r  H/do = 0, we obta in  s impler  r e l a t i o n s  which w i l l  shed more 
l i g h t  on the  r e l a t i o n s h i p  between the  d i f f e r e n t  parameters. 

The penet ra t ion  depths of m o d e l  and prototype a r e  equal i f  the  expression 
on the r i g h t  s i d e  of equation (22) is equal f o r  
r e spec t ive ly  . 

both model and prototype,  

Let  us f i r s t  assume t h a t  m o d e l  and prot.otype have the same pressure  d i f -  
f e r e n t i a l  across  the  e x i t  plane; i .e.,  both have the  same expansion r a t i o .  

P,/P, = const. (24) 
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I The constant  is un i ty  f o r  an  i d e a l l y  expanded j e t .  For a geometr ical ly  
sca led  model then ( the e x i t  Mach number i s  the same and the re fo re  the 
t h r u s t  p e r  e x i t  area) ,  

= [yM' Pch (1 -I- M2 Yy-l)l 
l is i d e n t i c a l  fo r  both model and prototype,  and a l s o  the core l eng th  

xc/do. From equation (23)  we ob ta in  f o r  i d e n t i c a l  yL 

For t h i s  case,  the- model dimensions a r e  i d e n t i c a l  with the prototype 
dimensions, and no sca l ing  is poss ib le .  

I f  w e  impose no r e s t r i c t i o n s  on the  s i m i l a r i t y  of the model except 
t h a t  of geometric s i m i l a r i t y  which s h a l l  be preserved f o r  model and 
prototype,  then the j e t  Mach number i s  the same and wi th  i t  the f ac to r  
f and the  dimensionless core length  (xc/do). Equation (23)  becomes now 

The e x i t  diameter of the model becomes 

1 2  



I f  the thrus t - to-area  r a t i o  i s  not changed and the  l i qu ids  on which the  
j e t s  impinge a r e  the same, then we obta in  the  above-mentioned case 
aga in ,  equation (26). Smaller model diameters a r e ,  of course,  des i red ,  
and the re fo re  the  following conditions should be observed: 

and 

Decreasing (F/d$)m, holding the  Mach number of the  j e t  the same as that 
of  the  prototype,  means decreasing the  chamber pressure of the  model 
which can be seen From eyuaiiuii (25;. ;e see  tkt t h e  d k z ~ s t e r  r z t f o  
decreases  l i n e a r l y  with the  chamber pressure  r a t i o .  This,  however, 
means that the  experiments have t o  be conducted i n  an underpressure 
chamber t o  s a t i s f y  the condition of pressure  constancy a t  the  e x i t  and 
holding thus the  same dimensionless core  length.  

! 
The second condi t ion s t a t e s  t h a t  we  have t o  use a l i qu id  heavier  

than water,  poss ib ly  mercury. The reduct ion i n  model diameter is then 
1/13.5 of the prototype diameter. 

More favorable  models a r e  obtained when the  geometric s i m i l a r i t y  
. i s  abandoned, and subsonic model j e t s  a r e  used t o  s imulate  c a v i t i e s  
produced by supersonic  j e t s .  

Since s c a l i n g  of geometrically s i m i l a r  models leads t o  an impract ical  
experimental apparatus ,  we must abandon t h i s  approach. On the  o ther  hand, 
w e  can r e a d i l y  p r e d i c t  the  cavi ty  depth accu ra t e ly  enough, a t  l e a s t  wi th in  
the  s c a t t e r  of the  experimental po in t ,  by using equations (17) and (18) 
which we a c t u a l l y  used f o r  der iving sca l ing  l a w s .  
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V I .  SPLASHING 

I n  Reference 3,  the  inves t iga to r s  observed t h a t  sp lash ing  occurs 
a f t e r  the  j e t  has reached a c e r t a i n  v e l o c i t y  and the  pene t ra t ion  depth 
no is  l a r g e r  than a c e r t a i n  c r i t i c a l  depth.  
from t h e i r  r e s u l t s  ind ica tes  t h a t  splashing occurs f o r  a cool a i r  j e t  
impinging normally on a water su r face  when the  c e n t e r l i n e  v e l o c i t y  'fn 
is  approximately 40 t o  50 f t / s e c ,  which corresponds t o  a c r i t i c a l  
pene t ra t ion  depth of -,04 f t .  The Kelvin-Helmholtz i n t e r f a c i a l  
i n s t a b i l i t y  r e l a t ionsh ip  [ll] predicted an a i r  v e l o c i t y  of about 2 2  f t / s e c .  
Here, wdves on a hor izonta l  su r f ace  forming the common boundary of two 
p a r a l l e l  currents  with d i f f e r e n t  v e l o c i t i e s  u ,  u' were considered ( the  
dash denotes the  v e l o c i t y  of the a i r ) .  The theory p red ic t s  an  i n s t a b i l i t y  
of the  waves i f  

An approximate es t imate  

where 45, p' a r e  the  d e n s i t i e s  of water and a i r ,  r e spec t ive ly ,  and 
the  minimum ve loc i ty  of the  waves, which is about . 7 1  f t / s e c  f o r  an a i r -  
water i n t e r f ace .  
which i s  about 27 f t / s e c  the amplitudes of the small waves about two- 
t h i r d s  of an inch i n  length,  w i l l  cont inua l ly  increase  u n t i l  d rop le t s  
a r e  formed. The ve loc i ty  of the  water a t  the  su r face ,  when compared t o  
the  v e l o c i t y  of the  j e t ,  is neg l ig ib ly  s m a l l .  W e  can therefore  assume 
that the $ loc i ty  of the a i r  must exceed t h i s  value.  We can then form 
a n  expression no/nocrit where nocrit is the pene t ra t ion  depth a t  which 
water  drops w i l l  form fo r  the  f i r s t  time. 

I f  the r e l a t i v e  v e l o c i t y  Iu - u' I exceeds t h i s  va lue ,  

. 

Splash heights a r e  a fun'ction of the  drop v e l o c i t y  vD a t  the  a i r  
water i n t e r f ace  (see Figure 5 f o r  explanat ion of the  s u b s c r i p t s ) .  
goa l  is now to  f ind  a r e l a t ionsh ip  between the  sp l a sh  he igh t  Sc and 
some known parameter of the  cav i ty  o r  the j e t .  
the  coqC!Xte equation of motion f o r  the gas- l iquid mixture a t  the 
cavity-water i n t e r f ace .  
v e l o c i t y  across  the shee t .  

Our 

Let us f i r s t  consider 

We assume a depart ing gas shee t  of constant  

The equations which govern the  motion of the  gas and the l i qu id  
drops a r e  the following: 

For the gas a t  the  i n t e r f a c e ,  we obta in  



The acce le ra t ion  of the gas from zero v e l o c i t y  a t  the s tagnat ion  poin t  
of the cavi ty  t o  its maximum veloc i ty  a t  the l i p  of the cav i ty  is due t o  
the  decreasing pressure force - A i  dp and the drag of the A.n.ds drops i n  
the  gas.  F r i c t ion  forces  a r e  neglected. A i  is the a rea  which is occupied 
by the gas,  A = A i  + A D  is the t o t a l  cross  s e c t i o n  of the depart ing mixture 
and n is the number of water drops per  u n i t  volume. To ca l cu la t e  the  drag 
the  drop s i z e  m u s t  be known. An equi l ibr ium drop s i z e  can be ca lcu la ted  
i f  the  pressure of the surrounding gas ,  the  pressure within the  d rop le t ,  
and the  su r face  tension of the drop a r e  known. 

The equation fo r  the l i qu id  drops is 

- dv 

d s  D 
A,,pD d s  2 v = - A,.,dp + Ads nD + (vi - vD) dm,, - % Ads ng s i n  9. 

There are severa l  causes of the  acce lera t ion  of the l i qu id  drops i n  t h i s  
element of length  ds  a t  a po in t  s: the  pressure f i e l d  a c t s  on the drops,  
and the  g r a v i t y  and the  drag forces which dece le ra t e  the drops. Further-  
more, new drops formed from the water and vapor may condense oniv Lite 
drops a l ready  formed which might have a lower ve loc i ty .  

AD is the  area occupied by the l i qu id  and \Ir the  i n c l i n a t i o n  of the 
stream-tube t o  the hor izonta l .  In add i t ion  t o  these equations,  the con- 
se rva t ion  laws of mass, energy, and momentum m u s t  be appl ied plus  an 
equation which determines the formation of drops. This is a very complex 
problem, and we have t o  s implify the  equation. W e  consider,  therefore ,  
only the  t r a j e c t o r y  of one drop of constant  s i z e .  

and 

(v - VJ2. g s i n  \Ir -l*+ P i  'D AD D dv 

D d s  
v - = -  

i 'D ds 2"b . 

The v e l o c i t y  of the gas a t  the interface is given as 
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where s is counted p o s i t i v e  from the s t agna t ion  po in t  t o  the l i p  of the 
cavi ty .  One can express dp/ds now as 

and the  combined equations become f i n a l l y  

A n  pL CD {e - 2 E@ -k (371 d(k). 

V 

2 U m a ej = [> PD (1  - s i n  + 
2m D 

This d i f f e r e n t i a l  equat ion w a s  numerically in tegra ted  f o r  d i f f e r e n t  drop 
s i z e s .  For la rge  drop s i z e s  s m a l l  v e l o c i t y  r a t i o s  were obtained, and 
with decreasing r a d i i  the  v e l o c i t y  r a t i o  increased u n t i l  the v e l o c i t y  
r a t i o  became one f o r  vanishing drop s i z e s .  Since a l l  drop s i z e s  a r e  
encountered i n  the depart ing gas water mixture,  the  v e l o c i t y  of the gas 
a t  the l i p  decreases because of the drag of the  water drops. Therefore,  
w e  s e t  VD/% = 1 - a ,  where a i s  the v e l o c i t y  de fec t  due t o  the drag of 
the  n l i q u i d  drops. The sp la sh  he igh t  of a s m a l l  drop can be approximated 
by 

V 
- -  - s in2q  max, 

sc 2g 

where qmx is the maximum i n c l i n a t i o n  of the d rop le t  t r a j e c t o r y  t o  the 
ho r i zon ta l .  
have almost  the same acce le ra t ion  as the gas a t  the cavity-water i n t e r -  

For deep cavi t ies ,  qmaX is of the order  of 8 0 " .  Small drops 

, face; therefore  , 

- 
-g s i n  q = vi d v i / d s  

and 

16 

uE/2n,g x s i n  q. 



I n s e r t i n g  t h i s  r e l a t i o n  i n t o  the above equation f o r  the s p l a s h  he ight ,  
w e  ob ta in  

S - C = (1 - a ) 2  sin2qmx s i n  $. 
“0 

Figure 13  shows some observed splash he ights  f o r  pene t r a t ion  20 t o  60 
times deeper than the  c r i t i c a l  depth nocrit. 
r a t i o s  no/nocrit approaching one $ and hx decrease t o  a small f i n i t e  
va lue  and depend on the cav i ty  diameter-to-depth r a t i o .  
pene t r a t ion  r a t i o s ,  the dimensionless s p l a s h  he ights  seem t o  approach 
sc/no x .7. These da t a  were obtained from Reference 10. 
however, are needed t o  confirm t h i s .  Since the cav i ty  o s c i l l a t e s  con- 
s ide rab ly  f o r  deep c a v i t i e s ,  the s p l a s h  he ights  a l s o  o s c i l l a t e  a t  t h e  
s a m e  frequency. The cons tan t  sp lash  i n  Figure 13  is defined as the 
minimum height  t h a t  t h e  splashing water  maintains  during the t e s t  run. 
On t h i s  cons tan t  s p l a s h  he igh t ,  a d i s t ance  of twice the  amplitude of 
the o s c i i i a t i o n  is superimposed LU u l t a i i i  ih sii irghg s i ; ?~~ t ; .  Tkio 
d i s t a n c e  is propor t iona l  t o  twice the amplitude of the c a v i t y  o s c i l l a t i o n  
squared. 

For small pene t r a t ion ,  

For l a r g e  

More da t a ,  

VII. PENETRATION DEPTH FOR A FULL-SCALE F-1 ENGINE 

An example shall i l l u s t r a t e  the procedure of c a l c u l a t i n g  the  probable 
pene t r a t ion  depth of a f u l l  scale  s i n g l e  engine. 

The F-1 engine w a s  chosen, wi th  the following data assumed. 

Chamber pressure 1000 ps ia  

E x i t  p res  su re  

Exit temperature 

E x i t  Mach number 

E x i t  v e l o c i t y  

Thrust  

Expans ion  r a t i o  

Ex i t  diameter 

Mean s p e c i f i c  r a t i o  

6.43 p s i a  (over-expanded) 

2544 O R  

3.70 

9807 f t / s e c  

1500 K l b s  

16.0 

11.67 f t  = 140 i n  

1.23. 
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V I I I .  THE PENETRATION DEPTH OF AN ENGINE CLUSTER 

The preceding d iscuss ion  d e a l t  wi th  only one engine impinging on 
a l i qu id  surface.  I f  more engines a r e  a d d e d ,  new a d d i t i o n a l  parameters 
have t o  be considered, f o r  ins tance ,  the spacing,  the  geometry of  the  
* c l u s t e r ,  and the number of engines. 
s ingle-engine inves t iga t ion  turned out  t o  be the core  length.  Therefore ,  
it is obvious t h a t  the d i s t ance  between the engines d i v i d e d  by t h e i r  core  
length  should be held cons tan t .  Figure 15 shows d i f f e r e n t  experiments 
w i th  a model Saturn c l u s t e r  of a 1 : l O O  s c a l e .  The e x i t  Mach number is 
Mex = 2.4. 
smaller than t h a t  f o r  a n  i d e a l l y  expanded one. From conf igura t ion  A ,  
where only one engine was on,  one can f ind  xc/do as approximately 9 .  
The t h r u s t  of a s i n g l e  engine is given as F = 9 . 6 3  l b s .  The expression 
F/(yLnodg) is formed by the parameters of one engine only.  
t i o n  depth increases  with increasing number of engines.  This can be 
explained by a s l i g h t  increase  i n  core  length  and, above a l l ,  by l e s s  
a t t e n u a t i o n  of the j e t  v e l o c i t y  of the combined engines,  s i n c e  the mix- 
ing process i s  delayed. 
i n  the case of configurat ion F, where the engines 2 and 4 are on, the 
j e t s  a c t  l i k e  s i n g l e  jets and consequently have the same penet ra t ion .  
Also an  attempt was made t o  p r e d i c t  the  pene t r a t ion  depth of the f u l l  
s c a l e  booster  with a l l  e i g h t  engines on. It w a s  found that the  Saturn 
booster  wi th  the nozzle plane a t  sea  l e v e l  (H/d, = 0) would have a 
pene t r a t ion  of approximately no/do = 40 t o  48, which would correspond 
t o  about  170 t o  205 f e e t .  In  Reference 10, a pene t r a t ion  depth of  169 
f e e t  was .  predicted without  consider ing the  compress ib i l i ty .  The minimum 
penet ra t ion ,  corresponding t o  f = 1, would be 170 f e e t .  

A very  important parameter of t he  

The j e t  i: over-expanded; t h i s  means t h a t  the core  length  is 

The penetra-  

However, . i f  the  engines a r e  very f a r  a p a r t  as 

I X .  CONCLUSION 

This inves t iga t ion  d e a l t  wi th  the  pene t ra t ion  of a compressible gas 
j e t  i n t o  a l i q u i d .  To analyze and c o r r e l a t e  t e s t  d a t a ,  a s impl i f i ed  j e t  
theory w a s  used where the  v e l o c i t y  decay follows a hyperbol ic  l a w .  How- 
ever ,  d e s p i t e  the s impl i f i ca t ions  , the theory c o r r e l a t e s  the a v a i l a b l e  
t e s t  da ta  r e l a t i v e l y  w e l l .  Some uncer ta in ty  e x i s t s  about the compres- 
s i b i l i t y  f a c t o r  f of a j e t .  As  long as the  r e l a t i v e  pene t r a t ion  is 
l a r g e ,  t he re  need n o t  be much concern about the f a c t o r  f ,  s i n c e  the  
Mach number on the cen te r l ine  of the j e t  f a l l s  f a r  down i n t o  the subsonic 
region.  

The ana lys i s  shows a l s o  that f o r  constant  e x i t  Mach number the j e t s  
of smaller  t h rus t  l e v e l  have a l a r g e r  dimensionless pene t ra t ion  depth 
than je t s  of large t h r u s t  l e v e l ;  s c a l i n g  is  the re fo re  no t  poss ib l e ,  
wi thout  changing the geometry of the rocke t  motor. However, wi th  the 
he lp  of  t he  s implif ied theory,  the p red ic t ion  of  the pene t r a t ion  depth 
is poss ib l e  when the j e t  da4a a r e  known. 
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Splash heights  were found t o  be a func t ion  of the  pene t ra t ion  depth 
n 
tRe r a t i o  sc/no seems t o  be constant;  however, more da ta  must be gathered 
t o  confirm t h i s  statement.  

only a f t e r  a c r i t i c a l  value of no is surpassed. For l a rge  pene t ra t ions ,  

For the pene t ra t ion  of rocket clusters, more parameters have t o  be 
considered and the  p o s s i b i l i t y  t o  p r e d i c t  the  pene t ra t ion  with a c e r t a i n  
accuracy decreases. 

In  p r inc ip l e ,  however, the  same bas i c  ideas which were appl ied t o  
the  s i n g l e  j e t  should apply a l s o  f o r  a mult i tude of jets,  a s  long as the  
important parameters a r e  held constant.  I f  t h i s  is done, one should be 
a b l e  t o  p red ic t  reasonably wel l  the pene t ra t ion  depth of the prototype. 

19 
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